Multilevel discretization of Symmetric Saddle Point Systems without the discrete LBB Condition
نویسندگان
چکیده
Using an inexact Uzawa algorithm at the continuous level, we study the convergence of multilevel algorithms for solving saddle-point problems. The discrete stability Ladyshenskaya-Babušca-Brezzi (LBB) condition does not have to be satisfied. The algorithms are based on the existence of a multilevel sequence of nested approximation spaces for the constrained variable. The main idea is to maintain an accurate representation of the residual associated with the main equation at each step of the inexact Uzawa algorithm at the continuous level. The residual representation is approximated by a Galerkin projection. Whenever a sufficient condition for the accuracy of the representation fails to be satisfied, the representation of the residual is projected on the next (larger) space available in the prescribed multilevel sequence. Numerical results supporting the efficiency of the algorithms are presented for the Stokes equations and a div − curl system.
منابع مشابه
Cascadic multilevel algorithms for symmetric saddle point systems
In this paper, we introduce a multilevel algorithm for approximating variational formulations of symmetric saddle point systems. The algorithm is based on availability of families of stable finite element pairs and on the availability of fast and accurate solvers for symmetric positive definite systems. On each fixed level an efficient solver such as the gradient or the conjugate gradient algor...
متن کاملMultilevel Gradient Uzawa Algorithms for Symmetric Saddle Point Problems
In this paper, we introduce a general multilevel gradient Uzawa algorithm for symmetric saddle point systems. We compare its performance with the performance of the standard Uzawa multilevel algorithm. The main idea of the approach is to combine a double inexact Uzawa algorithm at the continuous level with a gradient type algorithm at the discrete level. The algorithm is based on the existence ...
متن کاملSharp Stability and Approximation Estimates for Symmetric Saddle Point Systems
We establish sharp well-posedness and approximation estimates for variational saddle point systems at the continuous level. The main results of this note have been known to be true only in the finite dimensional case. Known spectral results from the discrete case are reformulated and proved using a functional analysis view, making the proofs in both cases, discrete and continuous, less technica...
متن کاملA saddle point least squares approach to mixed methods
We investigate new PDE discretization approaches for solving variational formulations with different types of trial and test spaces. The general mixed formulation we consider assumes a stability LBB condition and a data compatibility condition at the continuous level. We expand on the Bramble-Pasciak’s least square formulation for solving such problems by providing new ways to choose approximat...
متن کاملA Unified Approach for Uzawa Algorithms
We present a unified approach in analyzing Uzawa iterative algorithms for saddle point problems. We study the classical Uzawa method, the augmented Lagrangian method, and two versions of inexact Uzawa algorithms. The target application is the Stokes system, but other saddle point systems, e.g., arising from mortar methods or Lagrange multipliers methods, can benefit from our study. We prove con...
متن کامل